Parallel Ab Initio Quantum Chemistry on Pentium® Pro Networks

Edward Seidl Sandia National Laboratories

Introduction

- The need for speed
 - Quantum chemistry
 - Traditionally scales as $O(N^4)$ $O(N^2)$
 - Current workstations usable up to a dozen or so atoms
 - For hundreds of atoms need MPP machines
 - -MPP's
 - Expensive
 - Not terribly robust
 - Shared with many users

Introduction (cont'd.)

Workstation clusters

- Began as attempt to consume unused cycles
- Fast PC's may lead to commodity supercomputers
- Linux/GNU breaks dependence on costly software maintenance contracts
- You control access

Specifics

♣ 14 ALR Quad Pro

- 4 200MHz PPro with 256k cache
- 256 Mb ECC FPM memory
- DEC 21440 based fast ethernet card
- Adaptec 2940W SCSI
- 2Gb Seagate HD
- 2 Bay Networks fast ethernet switches
 - Linked to form virtual network
 - Can split cluster into two parts

Cost

Quantity	Description	Cost
1	3" Rack	\$1,314
4	6" Rack	2,550
4	4-way switch	851
12	Switch box kit	74
14	ALR Quad6 w/ 4 200MHz PPro CPU	18,143
56	16x36 FPM SIMM	1,535
14	Adaptec 2940W SCSI adapter	258
14	SMC 9332 fast ethernet card	85
2	Seagate 4Gb hard drive	1,399
14	Seagate 2Gb hard drive	895
2	Bay Netwroks Lattis Switch 28115	12,572
4	MAG DX15 monitor	359
1	Nanao T2-17TS monitor	899
2	3Com 590 ethernet	119
	Total Cost for System \$4	40,000

DAISy

Distributed Array of Inexpensive Systems

- ♣ 32-node dual Pentium Pro 200Mhz PC cluster
- ♣ UNIX compatible operating system (RedHat 4.0 w/2.0.27 Kernel)

Network

- standard 10 Mb/s (10BASE-2) Ethernet (used for client node NFS mounts and any client node interactive work users find necessary)
- switched 100Mbs/ (100BASE-TX) Fast Ethernet (used for user program message passing traffic)
- Gb/s hypercube connected Myrinet (also used for program message passing traffic)

Motive

– investigate the viability of commodity PC technology to perform computation of scientific and engineering problems traditionally performed on "Supercomputers"

Megalon Software

Linux

- Freely available OS
- SMP aware
- Large user community
- Source code available

♣ Edware 2.0.3

- Originally hierarchy of tar files similar to SLS
- Now use rpm
- Stole much from Redhat
- Move things around, PPro specific compiler options, fixes

Megalon Software (cont'd.)

* Tools

- GCC, G++, G77, f2c, JDK 1.0.2
- -GDB
- Emacs
- CVS/RCS

* Access

- Telnet/rsh/ftp
- -SSH
 - Secure connections
 - Encryption
 - Scripts to replace rdist
- Java-based signup sheet
 - Netscape IFC 1.0
 - No enforcement yet

Performance

- Pentium®Pro is a decent performer
 - 720x720 matrix multiply compiled with gcc
 - 2 outer loops unrolled level 2 = 55 Mflops
 - Outer loop unrolled level 4 with strip mining = 91 Mflops
 - Above with B matrix transposed = 111 Mflops
 - Memory bandwidth can be a problem

Performance

Speed of a 720x720 Matrix Multiply

N proc	2x2 transpose	4x1	4x1 transpose
1	55 Mflops	91 Mflops	111 Mflops
2	40 Mflops	90 Mflops	110 Mflops
4	20 Mflops	85 Mflops	105 Mflops

Mind Your Alignment

- * Fast floating point requires that doubles are aligned on a two-word boundary
 - Bug in GCC malign-double flag
 - Linux crt 1.o does not properly align stack
 - Different execution times depending on number of environment variables
 - Both problems fixed in Edware (fixed crt file in glibc-2.0.2 and libc-5.4.22)

Speed of a 300x300 Matrix Multiply on the Stack

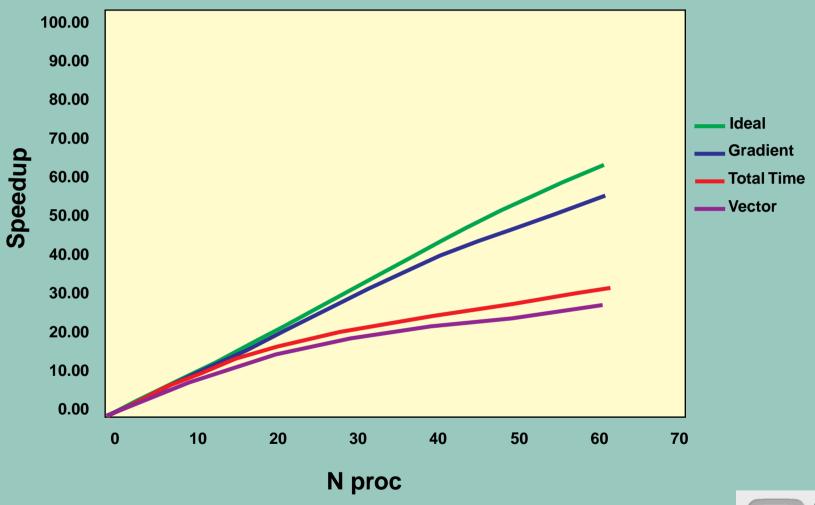
	1x1	2x2 transpose	2x2 transpose pointers
Aligned	41 Mflops	50 Mflops	46 Mflops
Mis-aligned	18 Mflops	17 Mflops	15 Mflops

Communications

- Message Passing Interface MPI
 - MPICH Argonne National Lab
 - http://www.mcs.anl.gov/mpi/mpich
 - LAM/MPI Ohio Supercomputing Center
 - http://www.osc.edu/lam.html
 - I find LAM to be more convenient
 - Neither implementations is particularly fast.

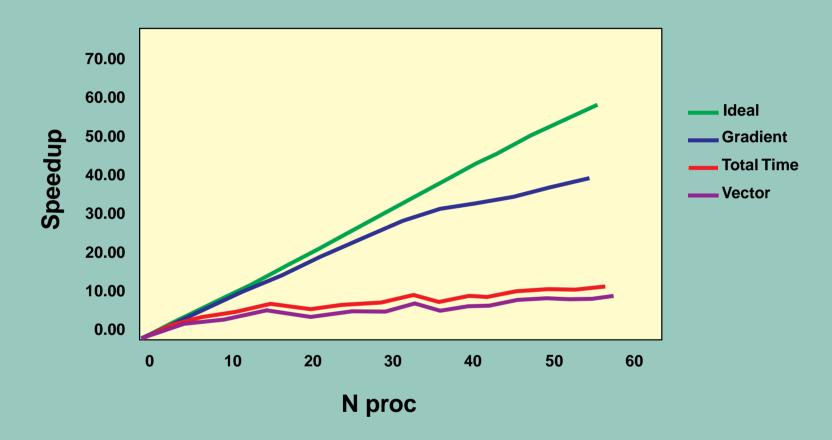
Performance of LAM/MPI

	Latency		Bandwidth	
N proc	normal (ms)	c2c (µs)	normal	c2c
1 per node				
2	2	200	33	22
4	2	200	33	22
8	2	210	32	22
2 per node				
2	2	74	45	95
4	3	300	9	20
8	3	300	7	20
16	3	300	9	20
4 per node				
4	4	180	23	69
8	5	550	6	12
10	5	550	5	12
32	5	550	5	12



Applications

- * MPQC Massively Parallel Quantum Chemistry
 - Originally intended for MPP machines
 - Direct SCF and MP2
 - Energies and gradients
 - Finite displacement second derivatives



PETN CI Teraflops speedup

PETN CI MPACTR speedup

Multithreaded MPQC

- Use pthreads library
 - To get most up-to-date version installed glibc 2.0.1
 - Had to hack MT support into libg++
 - Patches from H.J. Lu
 - A few things missing
 - Works fairly well

Conclusions

- Pentium Pro clusters give you plenty of bang for your buck
- ♣ Dual systems may be a better way to go depending on the application
- ♣ Direct access to the network is a must

